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A statistical distribution for crack growth technique is one of the important 
issues emerging from the fatigue crack propagation process. This study aims 
to compare three different statistical distributions for providing the best 
modelling of the fatigue data. The normal, the lognormal and the Weibull 
distribution are compared for determining a better fit for the variables. 
Kolmogorov-Smirnov has been chosen as the criterion of the best 
distribution of the variables. Ten replicate specimens of aluminium alloy 
A7075-T6 in constant amplitude crack tests were conducted. The number of 
cycles for the formation of the initial crack and initial crack length were 
taken as random variables. A Bootstrap approach was applied for ensuring 
that the chosen distribution was the best representative for this type of 
variables since small data was incorporated in this analysis, it was not 
suitable to justify the true population. Thus, the result showed that the 
lognormal distribution was the best distribution to represent the number of 
cycles and the length of the initial crack. It was found that whether the 
normal and lognormal types were suitable for those variables, the lognormal 
was more conservative for these types of variables. These two variables 
played the main role in life prediction. Therefore, an analysis of the statistical 
distribution is highly important. It is believed that these results lead to the 
significant prediction of fatigue lifetime. 
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1. Introduction 

*One of the important criteria to determine the 
mechanical effectiveness is fatigue occurrences. For 
example, predicting life estimation of a component in 
a mechanical field such as the components in an 
aircraft and train axle is important for minimising 
the cost of maintenance and inspection (Huynh et al., 
2012). There are two phases that contribute to the 
life of fatigue; the first one is the number of loading 
cycles required to initiate a crack and secondly, the 
number of cycles it takes for that crack to propagate 
and result in failure. Supported by Schijve (2014) 
and Li et al. (2015a), the process starts with initially, 
a crack initiation period which is controlled by the 
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local stress cycles at the material surface and 
secondly, a crack growth period, where there is a 
small crack growth that is driven by the cyclic stress 
intensity around the crack front.  

Crack initiation is a term that is used differently 
by scientists and engineers. For the scientists, 
studying the fatigue in the laboratory defined 
initiation as the number of cycles required to form, 
generate or nucleate the smallest crack that they 
could detect by any means. Meanwhile, for the 
engineers, designing and maintaining structures 
defined as initiation, is likely to mean the smallest 
crack or an engineering-sized crack that could be 
determined by a reliable Non-Destructive Evaluation 
(NDE) technique (Chan, 2010). 

One of the factors that determine the durability of 
the material is the occurrence of crack initiation on 
the material performance and the advanced process 
provides a warning that the condition of the material 
has been threatened (Goszczyńska, 2014). Sangid 
(2013) studied the importance of crack initiation in 
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predicting the fatigue life of components. Crack 
initiation dominates the process of fatigue failure, 
which is the most important factor, as the majority of 
the lifetime is spent in this stage, while the fatigue 
crack growth exerts a small influence on the global 
predictions, mainly in the high-cycle fatigue regime 
(Correia et al., 2013; Scharnweber et al., 2013).  

Identifying the suitable statistical distribution for 
the initial crack length and the number of loading 
cycles is required to make a better prediction of the 
material’s lifetime. An appropriate statistical 
approach should be used when studying the 
influence of the material microstructure on the 
fatigue behaviour of structural elements (Glodež et 
al., 2013). The analysis of the experimental surface 
crack growth data aims to determine the best 
statistical distribution and parameters of the 
relevant variables, allowing a better fit of the 
experimental observations (Khelif et al., 2008). Min 
et al. (1996) analysed the distribution of the crack 
initiation’s life and growth life and found that all of 
these results would be able to provide a solid test 
foundation for the study of the probabilistic fatigue, 
probabilistic fracture mechanics, fatigue reliability 
and its engineering applications.  

2. Related works 

A statistical distribution of the relevant variables 
is required in fatigue problems despite the fact that 
it is difficult to derive a physical description of the 
fatigue phenomenon quantitatively. Normally, a 
statistical distribution is assumed and the most well-
known function is the Gaussian distribution (also 
normal distribution). Khelif et al. (2008) found that 
the Weibull and lognormal distributions were 
proposed in the literature, regardless of the fact that 
the choice of appropriate distribution is a very 
difficult task. Thus, the statistical analysis is 
important to determine the best distribution of the 
variable rather than assuming it as a normal 
distribution. 

Previously, Schijve (2005) analysed three 
distribution functions in order to describe the 
distribution for fatigue; (i) the normal distribution 
function, (ii) the 3-parameter Weibull distribution 
function, and (iii) the lognormal distribution 
function. A study by Wu and Ni (2007) also 
considered three statistical distributions namely the 
Normal, Lognormal and Weibull distributions on 
aluminium alloy 2025-T6 by comparing the datasets 
and they found that the random loading cycles and 
random crack sizes were best fitted by both the 
lognormal and Weibull distributions, respectively for 
most cases studied. However, there was an 
argument, despite the fact that the three-parameter 
distributions of the Weibull and lognormal types are 
suitable for lifetime prediction, and the two-
parameter Weibull distribution is more suitable for 
the probabilistic fatigue design (Khelif et al., 2008). 
Another study by Makkonen (2009) only considered 
the Weibull distribution in his study, since it 
provides a slightly better fit with the experimental 

data and therefore, the parent population of crack 
initiation was assumed to be Weibull-distributed. 

 Verification is required after the process of 
identification of distribution is performed. A 
Goodness of fit test is applied for the verification of 
the decision for choosing the suitable distribution. 
The Goodness of fit tests like the Kolmogorov-
Smirnov or Chi-Square is applied due to the selection 
of the best distribution of the variables among the 
comparison distributions. Previously, Kolmogorov-
Smirnov’s goodness of fit test was used to select the 
best distribution among five distributions (Normal, 
2-parameter lognormal, 3-parameter lognormal, 2-
parameter Weibull and 3-parameter Weibull 
distributions) and based on the test, only the 
classical lognormal was seen to be suitable for the 
best fitting distribution for the HDPE structures 
(Khelif et al., 2008). Another study by Bao et al. 
(2009) found that the crack growth rate could be 
considered reasonably to follow the log-normal 
distribution in all the three stress levels (260MPa, 
280MPa and 320MPa) and verified by the value from 
the Chi-Square goodness of fit test. The purpose of 
this study is to determine the statistical distribution 
of the two variables: initial crack length and a 
random number of loading. In the real applications, 
the number of loading to reach a certain crack length 
is estimated as a continuous variable. For 
experimental purposes, that number of loading is 
counted as a discrete variable to determine the trend 
of the fatigue crack growth. 

2.1. Small sample size and bootstrap approach 

In the engineering field, specifically in fatigue 
crack growth problem, it is rare to obtain a large 
sample size due to some limitations in the 
experimental works. For the statisticians, it is 
believed that the small data set will cause a problem 
in producing the results of the parameter estimates. 
In other words, a further analysis and results from 
this parameter estimate could be doubtful due to the 
accurateness of the predecessor analysis. Some 
phenomenon like the prediction analysis when 
involving small data set always produce misleading 
result (Šeruga and Nagode, 2015; Bello et al., 2015). 
Thus, the estimation results from a small sample 
data set, for instance, the sample mean and sample 
standard deviation, are not suitable to justify the 
generalisation of the true population. 

Bootstrap resampling is a solid and popular 
method to resample the original data from a small 
sample size. The Bootstrap method is introduced to 
overcome the estimation parameters’ problem in 
generalising the true population. Estimation values 
from the sample are crucial for ensuring the 
robustness of the analysis, like a prediction of a 
lifetime of a material. Bootstrap method is the 
resampling technique from the initial sample that 
requires at least 1000 bootstrap resamples is 
sufficient to obtain accurate confidence interval 
estimates (Chen et al., 2015). Based on the bootstrap 
method, standard error and confidence interval 



Januri et al/ International Journal of Advanced and Applied Sciences, 4(10) 2017, Pages: 130-138 

132 
 

would be calculated to describe the uncertainty in 
the probabilistic models based on the limited data. 
The result of confidence interval and standard error 
from the Bootstrap technique have shown the best 
values compared to other methods like Monte Carlo 
and classical method (Khelif et al., 2008). The 
problem of a small sample size will contribute to a 
problem that leads to a misleading selection of the 
best-fit probability distribution. It is proven to 
handle the problem of large variation when 
modelling with a small set of samples for ensuring 
that the objective and reliable analysis would 
represent the large population (Li et al., 2015a; Bello 
et al., 2015; Chen et al., 2015; Suo et al., 2015).  

For estimating the sampling properties of 
statistics from the data, bootstrap method is 
applicable due to simple and straightforward 
method (Li et al., 2015b). The characteristics of the 
bootstrap are; there is no need to make any 
assumptions about the overall distribution, and it 
can be inferred with the sample data by the 
computer technology (Suo et al., 2015). Therefore, 
the technique is useful for small sample size and 
with an unknown distribution. As a data-driven 
method, the bootstrap method can evaluate the 
measurement uncertainty from the poor information 
without prior information about the probability 
distribution of the measured data in real-time (Chen 
et al., 2015). 

In this paper, the determination of the statistical 
distribution is carried out on the initial crack length 
and the number of cycles for the initial crack 
formation on aluminium alloy 7075-T6, where three 
different probability distribution functions have 
been considered to search for a better fitting: 
Normal, lognormal, Weibull distributions and 
subsequently, the Kolmogorov-Smirnov was applied 
to determine the best distribution for these two 
variables. However, the experimental results only 
yielded ten specimens, which is a very small dataset 
to generalise the actual population. Therefore, the 
bootstrap approach is applied to make sure that the 
chosen distribution was representing the variables. 

3. Data measurement 

In this study, the data was collected from the 
experiments. The number of loading cycles forming 
the initial crack was determined and the lengths of 
the crack initiation were measured. Aluminium alloy 
of 7075-T6 was chosen as a material in this 
experiment. This type of material, aluminium alloy of 
7075-T6 series, is used to make aircraft, especially 
the wings on a naval aircraft (Newman et al., 2013).  

There were only ten samples in the experiment. 
The dimensions of the specimens were 160.0 mm 
length, 60.0 mm wide and 20.0 mm thickness. They 
were tested at room temperature under constant 
amplitude loading of 45kN stress load and 0.1 fixed 
stress ratios in order to observe the fatigue crack 
growth on the surface of the material. The use of 
45kN ensured that it excessed the endurance limit 
load, which affirmed that the fatigue would occur for 

the dimensions of this material. The length of the 
initial crack of the ten specimens was measured 
using the digital calliper and the average length of 
five measurements was used.  

Fig. 1 shows the result of the experiment 
concerning the formation of semi-elliptical of initial 
crack length and fatigue crack growth on the 
material surface. The semi-elliptical shapes were 
formed due to the nature of the fatigue crack growth 
and the dimension of the material. These particles or 
clusters are represented as semicircular shape 
(Newman et al., 2013; Náhlík et al., 2017). This paper 
only focuses on the initial crack part, which is the 
first semi-elliptical flaw. 

 

Fig. 1: Material surface of the aluminium alloy 7075-T6 
from the experiment 

 
Fig. 2 presents the data of the random loading 

cycles nucleating the initial crack for 10 specimens of 
aluminium alloy A7075-T6. The results showed that 
there was no relationship between the random 
loading cycles and initial crack since the initial crack 
formed does not depend on how many loading cycles 
can go through the material. The majority of them 
only required fewer random loading cycles but they 
produced a lengthy initial crack as compared to the 
others. In the meantime, some of the specimens 
required more loading cycles to initiate the initial 
crack such as specimen numbers 4, 6 and 8, even 
though the experiments were conducted on the same 
material, dimension, machine and environment. 
There are some factors that influence the results 
during the conduct of the experiment, such as 
machine shutdown or a human factor. 

 

 
Fig. 2: Combination of the initial crack and random loading 

cycles 

 
Fig. 3 proves the relationship between the two 

variables, whereby there is a weak relationship 
between the number of random loading cycles and 
the initial crack and is verified by the value of 
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correlation coefficient, which is only 3.96% 
correlation. Meanwhile, Fig. 4 illustrates the process 
of the fatigue life for the ten specimens: starting with 
the initial crack, crack growth and failure. It indicates 
that the initial crack lengths vary from 3mm to 6mm 
for all specimens and there is only one specimen 
showing random loading cycles more than 100,000 
cycles to fracture. 

 
Fig. 3: Scatter chart on the crack initiation versus the 

number of cycles 

 
Fig. 4: Crack growth versus the number of cycles 

4. Method 

The distributions for the initial crack length and 
the number of cycles to nucleate the initial crack 
were selected. Based on the previous literature, the 
selection of the distributions was found suitable for 
the data lifetime particularly the fatigue crack 
growth data (Schijve, 2005; Wu and Ni, 2007). The 
probability density functions, parameters estimation 
and its statistical properties are given as follows: 

 

  The probability density of a normal distribution is 
given by 

 

𝑓(𝑥; 𝜇, 𝜎) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 [

(𝑥−𝜇)2

2𝜎2
] , 𝜇 ≥ 0, 𝜎 ≥ 0                        (1) 

 

Where 𝜇 refers to the mean length of the initial 
crack length (mm) and the number of loading cycles 
and 𝜎 is a standard deviation parameter of the same 
variables. Parameter estimates can be determined 
using the maximum likelihood approach, which is 
derived from the likelihood function. Likelihood 
function for the Normal distribution is given as 

𝑙𝑛𝐿(𝑥; 𝜇, 𝜎) = ∏
1

√2𝜋𝜎2
𝑒𝑥𝑝 [

(𝑥−𝜇)2

2𝜎2
]       =𝑛

𝑖=1

(
1

√2𝜋𝜎2
)

𝑛
𝑒𝑥𝑝 [∑

(𝑥−𝜇)2

2𝜎2
𝑛
𝑖=1 ]   (2) 

 

Then, the estimators can be derived from the 
likelihood function by the differentiation of 
𝑙𝑛𝐿(𝑥; 𝜇, 𝜎) with respect to 𝜇 and 𝜎, which are given 
as 
𝑑[𝑙𝑛𝐿(𝜇,𝜎2)]

𝑑𝜇
=

∑ (𝑥𝑖−𝜇)𝑛
𝑖=1

𝜎2
  

 

and 
 
𝑑[𝑙𝑛𝐿(𝜇,𝜎2)]

𝑑𝜇
=

−𝑛

2𝜎2
+

∑ (𝑥𝑖−𝜇)𝑛
𝑖=1

2𝜎4
                     (3) 

 

Then, by solving these two partial derivatives, we 
can obtain the parameter estimation for both 𝜇 and 
𝜎, which are given as: 
 

�̂� =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 𝑎𝑛𝑑 �̂�2 =

∑ (𝑥𝑖−𝜇)𝑛
𝑖=1

𝑛
                          (4) 

 

The parameters, 𝜇 and 𝜎2, provide the 
information about the mean and variance of the 
distribution. Apart from that, the coefficient of 
variation is 𝜎 𝜇⁄ , coefficient of skewness is equal to 
zero and the coefficient of kurtosis is equal to three.  

 
  The probability density of the lognormal 

distribution is given by: 
 

𝑓(𝑥; 𝜇, 𝜎) =
1

𝑥𝜎√2𝜋
𝑒𝑥𝑝 [

−(ln(𝑥)−𝜇)2

2𝜎2
] , 𝜇 ≥ 0, 𝜎 ≥ 0                (5) 

 

Where, 𝜇 is a shape parameter and 𝜎is a scale 
parameter of the length of the initial crack and 
number of loadings. The likelihood function of the 
Lognormal distribution is given as 
 

𝑙𝑛𝐿(𝑥; 𝜇, 𝜎) =
𝑛

2
ln(𝜎2) −

𝑛

2
ln(2𝜋) − ln(∏ 𝑥𝑖

𝑛
𝑖=1 ) −

∑
(ln(𝑥𝑖)−𝜇)2

2𝜎2
𝑛
𝑖=1                       (6) 

 

Then, by using the same approach, the maximum 
likelihood estimator for the Lognormal parameters is 
determined as 
 

�̂� =
∑ 𝑙𝑛𝑥𝑖

𝑛
𝑖=1

𝑛
 𝑎𝑛𝑑 �̂� =

∑ (𝑙𝑛𝑥𝑖−
∑ 𝑙𝑛𝑥𝑖

𝑛
𝑖=1

𝑛
)𝑛

𝑖=1

𝑛
.                                   (7) 

 

The statistical properties of the Lognormal 
distribution are provided by the mean, 𝑒𝑥𝑝[𝜇 +
𝜎2 2⁄ ], the variance, 𝑒𝑥𝑝(𝜎2)[𝑒𝑥𝑝(𝜎2) − 1]𝑒𝑥𝑝(2𝜇), 

the coefficient of variation, √[𝑒𝑥𝑝(𝜎2) − 1], the 
coefficient of skewness, [𝑒𝑥𝑝(𝜎2) +

2]√[𝑒𝑥𝑝(𝜎2) − 1] and the coefficient of kurtosis 
𝑒𝑥𝑝(4𝜎2) + 2𝑒𝑥𝑝(3𝜎2) + 3𝑒𝑥𝑝(2𝜎2) − 3 
(Krishnamoorthy, 2006). 

 

 The probability density of the Weibull distribution 
is given by  

 

𝑓(𝑥; 𝛼, 𝛽) =
𝛽

𝛼
(

𝑥

𝛼
)

𝛽−1

𝑒𝑥𝑝 [− (
𝑥

𝛼
)

𝛽

] , 𝛽 ≥ 0, 𝛼 ≥ 0    (8) 

 

where, 𝛽 is a shape parameter and 𝛼 is a scale 
parameter for the initial crack length and the 
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number of loading cycles. The likelihood function of 
the Weibull distribution can be written as 
 

𝐿(𝑥; 𝛼, 𝛽) = ∏
𝛽

𝛼𝛽
𝑛
𝑖=1 (𝑥𝑖)𝛽−1𝑒𝑥𝑝 [− (

𝑥𝑖

𝛼
)

𝛽
].                            (9) 

 

Then, using the same approach, the maximum 
likelihood estimator for the Weibull distribution can 
be determined as  

�̂� = [(∑ 𝑥𝑖
�̂�𝑛

𝑖=1 𝑙𝑛𝑥𝑖) (∑ 𝑥𝑖
�̂�𝑛

𝑖=1 )
−1

− 𝑛−1 ∑ 𝑙𝑛𝑥𝑖
𝑛
𝑖=1 ]

−1

   

 

and 
 

�̂� = [(
1

𝑛
) ∑ 𝑥𝑖

�̂�𝑛
𝑖=1 ]

1

�̂�
                   (10) 

 

The maximum likelihood estimator for the 
parameters of Weibull distributions can be 
determined numerically using methods such as the 
Newton-Rapson, scoring, EM algorithm, quasi-
Newton and the Nelder-Mead method (Masseran et 
al., 2013). The statistical properties of the Weibull 
distribution are provided by the mean, Γ(1 + 1 𝛽⁄ ) , 
the variance, (Krishnamoorthy, 2006) 

 

𝛼2Γ(1 + 2 𝛽⁄ ) − [Γ(1 + 1 𝛽⁄ )]2, 
 

the coefficient of variation, 
 

√[Γ(1 + 2 𝛽⁄ ) − [Γ(1 + 1 𝛽⁄ )]2] Γ(1 + 1 𝛽⁄ )⁄ ,   
 

and the coefficient of skewness 
 

 
Γ(1+3 𝛽⁄ )−3Γ(1+1 𝛽⁄ )Γ(1+2 𝛽⁄ )+2[Γ(1+1 𝛽⁄ )]3

[Γ(1+1 𝛽⁄ )−{Γ(1+1 𝛽⁄ )}2]1 2⁄   

 

Since the data is considered as a small sample 
size, the bootstrapping analysis is considered to 
generalise the population. Bootstrap samples are 
constructed based on a random sampling with 
replacement from the original dataset. With that, 
each observation in the bootstrap sample set may 
appear once, more than once or not at all. With the 
constructed bootstrap sample set, the statistics of 
concern (e.g., sample mean, sample SD, and K-S 
scores) are obtained.  

Based on the Li et al. (2015b), the procedure is as 
follows: Let, original data set, 𝑋 = {𝑥𝑖 , 𝑖 = 1,2, … , 𝑁}, 
then, a bootstrap sample set 𝐵𝑗 = {𝐵1𝑗 , 𝐵2𝑗 , … , 𝐵𝑁𝑗}is 

constructed by random sampling with replacement 
from 𝑋. From this bootstrap sample set, the sample 
mean and SD are given as 
 

�̅�𝑁𝑗 =
1

𝑁
∑ 𝐵𝑖𝑗  𝑎𝑛𝑑 𝑆𝑁𝑗 = √

1

𝑁−1
∑ (𝐵𝑖𝑗 − 𝐵𝑁𝑗)

2𝑁
𝑖=1

𝑁
𝑖=1   

 

The above procedure is repeated and the 𝑁𝑆 
bootstrap sample sets are obtained. For each set of 
bootstrap samples, the sample mean, standard 
deviation and the KS values are computed.  

Then, the bootstrap mean and SD estimates of the 
sample mean value, 𝑀𝑁 can be calculated by 
 

𝑀𝑁,𝑚𝑒𝑎𝑛 ≈
1

𝑁𝑠
∑ �̅�𝑁𝑗

𝑁𝑠

𝑗=1   

 

and  
 

𝜎𝑀𝑁
≈

1

𝑁𝑠−1
∑ (�̅�𝑁𝑗 − 𝑀𝑁,𝑚𝑒𝑎𝑛)

2𝑁𝑠

𝑗=1   

 

Similarly, the bootstrap mean and SD estimates of 
the sample SD, 𝑆𝑁, are derived as below: 

 

𝑆𝑁,𝑚𝑒𝑎𝑛 ≈
1

𝑁𝑠
∑ 𝑆𝑁𝑗

𝑁𝑠

𝑗=1   

 

and 
 

𝜎𝑆𝑁
≈ √

1

𝑁𝑠−1
∑ (𝑆𝑁𝑗 − 𝑆𝑁,𝑚𝑒𝑎𝑛)

2𝑁𝑠

𝑗=1 .  

 

In this paper, N=5000 is adopted. A 5000 
resampling was selected to ensure that the results 
were reliable.  

5. Results and discussion 

The descriptive statistic was analysed to describe 
the experimental data obtained. The Kolmogorov-
Smirnov goodness of fit test (K-S test) was applied to 
investigate the statistical distribution of the number 
of the loading cycles and the length of the crack 
initiation. Tables 1 and 2 show the result of the 
parameters estimation, the goodness of fit test and 
the Coefficient of Variation (COV) values for each 
distribution of the length of initial crack and number 
of loading cycles for the original data set, 
respectively. 

5.1. Determining probability distribution 

As discussed above, the three distributions were 
also compared in the bootstrapping analysis. Fig. 5 
indicates the PDF of the mean of number of cycles on 
the three distributions: normal, lognormal and 
Weibull. It clearly shows that the Weibull curve is 
shifted out from the histogram while, the normal and 
lognormal curves fit perfectly on the histogram. As 
the number of specimens tested is small for the 
experiment, the classical parameter estimates are 
not suitable. Hence, to verify the value of parameter 
estimates, two methods were compared to take into 
account the small sample estimates: the resampling 
technique and the Bootstrap method. Table 3 shows 
the obtained mean and the standard deviation, and 
the confidence intervals for the two variables. The 
Bootstrap technique was seen to give the narrowest 
confidence intervals for the given data. It could be 
interpreted as 95% confident that the average 
number of cycles of all populations was between 
31212 and 47426 cycles, whereas, the mean of initial 
crack length was between 3.5mm and 4.097mm. 
Moreover, the standard error and standard 
deviation, in this technique, were seen to be lower 
than the other methods. Standard deviation 
explained the shape of the distribution, which was 
the distance of the individual data from the mean 
value, while, the standard error explained the 
distance of the sample mean to the true mean of the 
true population. 
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Figs. 6-9 show the probability density functions of 
the sample mean and the standard deviation of the 
initial crack and the number of cycles that nucleate 

the initial crack, respectively. Their sampling 
properties are summarised in Table 4-6. 

 
Table 1: Descriptive statistic for the initial crack length 

Distribution Parameter estimates K-S test p-value Mean Variance COV 

Normal 
𝜇 = 3.825 
𝜎 =0.474 

0.171 0.885 3.825 0.225 0.124 

Log-normal 
𝜇 = 1.335 
𝜎 =0.120 

0.153 0.948 3.827 0.212 0.120 

Weibull 
𝛼 =8.410 
𝛽 =4.034 

0.194 0.779 3.808 0.291 0.142 

 
Table 2: Descriptive statistic for the number of loading cycles 

Distribution Parameter estimates K-S test p-value Mean Variance COV 

Normal 
𝜇=39328.4 
𝜎=14165.7 

0.240 0.536 39328.4 2.01 x 108 0.360 

Log-normal 
𝜇=10.525 

𝜎=0.344258 
0.196 0.771 39507.3 1.96 x 108 0.355 

Weibull 
𝛼=3.1091 
𝛽=44035 

0.233 0.575 39386.1 1.92 x 108 0.352 

 

 
Fig. 5: PDF mean of the initial crack for the three 

distributions 

 
Fig. 6: Mean of the bootstrap initial crack 

 
 

Table 3: Parameter estimates and confidence intervals by three different methods 
 Initial crack length Number of loading cycles 

Classical 3.8243 39328.4 
Standard Deviation 0.476441217 14165.6681 

Standard Error 0.150663942 4479.577577 

Confidence Interval 
3.528998674 
4.119601326 

30548.42795 
48108.37205 

   
Resampling 4.1254 39048.3 

Standard Deviation 0.518029214 13229.06913 
Standard Error 0.16381522 4183.398977 

Confidence Interval 
3.804322167 
4.446477833 

30848.838 
47247.762 

   
Bootstrap 3.825605 39319.65 

Standard Deviation 0.440736 13085.3 
Standard Error 0.13835 4136.172 

Confidence Interval 
3.554429 
4.09676 

31211.97 
47425.77 

 

Tables 4-5 exhibit the descriptive analysis of the 
three selected distributions of the initial crack length 
and number of cycles based on the mean and the 
standard deviation values from the bootstrap data, 
respectively. This includes all the parameter 
estimation values, including the COV values, which 
were slightly lower than the original data in Table 1 
and Table 2. Based on these results, the Weibull 
distribution was seen to be unsuitable for both the 
variables even for a small or a large-scale data, and 

the COVs of the mean values for the three candidate 
distributions of both variables were comparable. 

 
Table 4: Descriptive statistic for the initial crack length 

based on the bootstrap dataset 
Distribution Parameter estimation Mean Var COV 

Normal 
𝜇 = 3.820 
𝜎 =0.147 

3.820 0.021 0.039 

Lognormal 
𝜇 = 1.340 
𝜎 =0.0382 

3.820 0.021 0.038 

Weibull 
𝛼 =3.892 

𝛽 =25.486 
3.810 0.035 0.049 
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Fig. 7: Standard deviation of the bootstrap initial crack 

 

 
Fig. 8: Mean of the bootstrap number of cycles 

 

 
Fig. 9: Standard deviation of the bootstrap number of 

loading cycles 
 

Figs. 10-11 show the probability density 
functions of the KS values associated with the three 
candidate distributions for the initial crack and 
number of loading cycles, respectively. The sampling 
properties of the KS values for the original data are 
also listed in Table 1 and Table 2. The COVs of the KS 
values for the normal and lognormal candidate 
distributions of initial crack and number of cycles 
are comparable. However, the COV of the KS value 
for the Weibull distribution was seen to be 
significantly different from the data. The best-fit 
distribution can be identified from the KS values 
associated with the three candidate distributions for 
each bootstrap sample. 

 

 

Table 5: Descriptive statistic for the random loading 
cycles based on the bootstrap dataset 

Distribution Parameter estimation Mean Var COV 

Normal 
𝜇 = 39291.9 
𝜎 =4237.68 

39291.9 
1.80 
x 107 

0.11 

Lognormal 
𝜇 =10.573 
𝜎 =0.108 

39292.6 
1.81 
x 107 

0.11 

Weibull 
𝛼 =41216.5 

𝛽 =9.563 
39136.1 

2.41 
x 107 

0.13 

 
Table 6: Sampling properties of the mean, standard 
deviation and COV values for the KS values for two 

variables 

 
Initial crack Number of cycles 

Mean SD COV Mean SD COV 
Mean 
value 

3.828 0.143 0.037 39386 4258.7 0.108 

Std. dev 0.442 0.104 0.236 13104 3001.1 0.229 
Normal 0.167 0.031 0.184 0.182 0.031 0.170 

Log-
normal 

1.806 0.181 0.101 1.719 0.164 0.095 

Weibull 0.180 5.518 30.647 0.195 5.718 29.305 

 
Fig. 10: KS-values for initial crack length 

 
Fig. 11: KS values for number of loading cycles 

 

Note that the distribution cannot be determined 
as the best-fit distribution due to the small sample 
size. In this respect, the bootstrap method shows a 
great advantage over the traditional methods. 

Fig. 12 illustrates a comparison of the probability 
plot for all three candidate’s distributions of the 
initial crack length. The behaviour of all distributions 
is quite similar which is between 3.65mm and 4.1 
mm. There are two intersections illustrated in the 
graph, which explained the likelihood of the initial 
crack formation happening at 25% and 90%, 
respectively, which are around 3.8mm and 4.1mm.  
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Fig. 12: Probability plot of the initial crack length for the 

three distributions 

 
Fig. 13 and Fig. 14 exhibit a comparison for all the 

distributions for the number of loading cycles. Fig. 
13 presents the fact that all distributions have 
agreed to predict the 25% likelihood of initial crack 
length being formed during 35,000 loading cycles, 
and 90% likelihood when there are 45,000 loading 
cycles. 

From the observations, the Normal and Weibull 
distributions demonstrate a linear relation or almost 
a similar behaviour in explaining the distribution of 
the data. Conversely, the Lognormal demonstrates 
the curve relation. Naturally, the curve relation is 
better in presenting the real situation problems. Fig. 
14 supports the lognormal distribution, showing that 
it is the best distribution to represent the variable.  

6. Conclusion 

A constant amplitude-loading test was conducted 
on an aluminium alloy A7075-T6 in order to identify 
the statistical distribution. Based on the 
experimental findings, there is no relationship 
between random loading cycles and the length of the 
initial crack. The Normal, lognormal and the Weibull 
distributions were selected and compared and the 
selection of the best distribution was verified by the 
Kolmogorov-Smirnov test.  

 

 
Fig. 13: Comparison of the probability plot of the three 

distributions of random loading cycles 

 
Fig. 14: Comparison of the probability density function of 

the three distributions of number of loading cycles 
 

The major conclusions of this investigation have 
been summarised below. First, two variables were 
selected as the main factors in Firstly, the two 
variables were selected as the main factors in 
explaining the fatigue crack growth problems: initial 
crack length and random loading cycles. Secondly, 
the numerical results showed that the bootstrap 
method could effectively model the variations of the 
sample statistics and the KS scores, even though the 
sample size of the original dataset was as small as 
N=10. Thirdly, by the bootstrap method, it was 
significantly seen that the best distribution of the 
two variables in the crack problem, was the 
lognormal distribution, which was conducted 
graphically and quantitatively. It is believed that the 
outcomes from this study would be able to model the 
fatigue time accurately. This study considered the 
random loading and the initial crack length. To 
predict the fatigue life, there are three important 
processes. Therefore, the statistical distribution for 
the fatigue life should be considered for future 
research to ensure the modelling of the fatigue life 
distribution more accurately. 
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